lunes, 12 de julio de 2010

ESTRUCTURA Y COMPOSICION DEL DNA



El ácido desoxirribonucleico, frecuentemente abreviado como ADN (y también DNA, del inglés DeoxyriboNucleic Acid), es un tipo de ácido nucleico, una macromolécula que forma parte de todas las células. Contiene la información genética usada en el desarrollo y el funcionamiento de los organismos vivos conocidos y de algunos virus, siendo el responsable de su transmisión hereditaria.

Desde el punto de vista químico, el ADN es un polímero de nucleótidos, es decir, un polinucleótido. Un polímero es un compuesto formado por muchas unidades simples conectadas entre sí, como si fuera un largo tren formado por vagones. En el ADN, cada vagón es un nucleótido, y cada nucleótido, a su vez, está formado por un azúcar (la desoxirribosa), una base nitrogenada (que puede ser adenina→A, timina→T, citosina→C o guanina→G) y un grupo fosfato que actúa como enganche de cada vagón con el siguiente. Lo que distingue a un vagón (nucleótido) de otro es, entonces, la base nitrogenada, y por ello la secuencia del ADN se especifica nombrando sólo la secuencia de sus bases. La disposición secuencial de estas cuatro bases a lo largo de la cadena (el ordenamiento de los cuatro tipos de vagones a lo largo de todo el tren) es la que codifica la información genética: por ejemplo, una secuencia de ADN puede ser ATGCTAGATCGC... En los organismos vivos, el ADN se presenta como una doble cadena de nucleótidos, en la que las dos hebras están unidas entre sí por unas conexiones denominadas puentes de hidrógeno.


El ácido desoxirribonucleico, frecuentemente abreviado como ADN (y también DNA, del inglés DeoxyriboNucleic Acid), es un tipo de ácido nucleico, una macromolécula que forma parte de todas las células. Contiene la información genética usada en el desarrollo y el funcionamiento de los organismos vivos conocidos y de algunos virus, siendo el responsable de su transmisión hereditaria.

Desde el punto de vista químico, el ADN es un polímero de nucleótidos, es decir, un polinucleótido. Un polímero es un compuesto formado por muchas unidades simples conectadas entre sí, como si fuera un largo tren formado por vagones. En el ADN, cada vagón es un nucleótido, y cada nucleótido, a su vez, está formado por un azúcar (la desoxirribosa), una base nitrogenada (que puede ser adenina→A, timina→T, citosina→C o guanina→G) y un grupo fosfato que actúa como enganche de cada vagón con el siguiente. Lo que distingue a un vagón (nucleótido) de otro es, entonces, la base nitrogenada, y por ello la secuencia del ADN se especifica nombrando sólo la secuencia de sus bases. La disposición secuencial de estas cuatro bases a lo largo de la cadena (el ordenamiento de los cuatro tipos de vagones a lo largo de todo el tren) es la que codifica la información genética: por ejemplo, una secuencia de ADN puede ser ATGCTAGATCGC... En los organismos vivos, el ADN se presenta como una doble cadena de nucleótidos, en la que las dos hebras están unidas entre sí por unas conexiones denominadas puentes de hidrógeno.
La estructura de soporte de una hebra de ADN está formada por unidades alternas de grupos fosfato y azúcar.[26] El azúcar en el ADN es una pentosa, concretamente, la desoxirribosa.

Ácido fosfórico:

Enlace fosfodiéster. El grupo fosfato une el carbono 5' del azúcar de un nucleósido con el carbono 3' del siguiente.Su fórmula química es H3PO4. Cada nucleótido puede contener uno (monofosfato: AMP), dos (difosfato: ADP) o tres (trifosfato: ATP) grupos de ácido fosfórico, aunque como monómeros constituyentes de los ácidos nucleicos sólo aparecen en forma de nucleósidos monofosfato.


Desoxirribosa:
Es un monosacárido de 5 átomos de carbono (una pentosa) derivado de la ribosa, que forma parte de la estructura de nucleótidos del ADN. Su fórmula es C5H10O4. Una de las principales diferencias entre el ADN y el ARN es el azúcar, pues en el ARN la 2-desoxirribosa del ADN es reemplazada por una pentosa alternativa, la ribosa.[24]
Las moléculas de azúcar se unen entre sí a través de grupos fosfato, que forman enlaces fosfodiéster entre los átomos de carbono tercero (3′, «tres prima») y quinto (5′, «cinco prima») de dos anillos adyacentes de azúcar. La formación de enlaces asimétricos implica que cada hebra de ADN tiene una dirección. En una doble hélice, la dirección de los nucleótidos en una hebra (3′ → 5′) es opuesta a la dirección en la otra hebra (5′ → 3′). Esta organización de las hebras de ADN se denomina antiparalela; son cadenas paralelas, pero con direcciones opuestas. De la misma manera, los extremos asimétricos de las hebras de ADN se denominan extremo 5′ («cinco prima») y extremo 3′ («tres prima») respectivamente.
Bases nitrogenadas:
Las cuatro bases nitrogenadas mayoritarias que se encuentran en el ADN son la adenina (abreviado A), citosina (C), guanina (G) y timina (T). Cada una de estas cuatro bases está unida al armazón de azúcar-fosfato a través del azúcar para formar el nucleótido completo (base-azúcar-fosfato). Las bases son compuestos heterocíclicos y aromáticos con dos o más átomos de nitrógeno, y, dentro de las bases mayoritarias, se clasifican en dos grupos: las bases púricas o purinas (adenina y guanina), derivadas de la purina y formadas por dos anillos unidos entre sí, y las bases pirimidínicas o pirimidinas (citosina y timina), derivadas de la pirimidina y con un solo anillo.[24] En los ácidos nucleicos existe una quinta base pirimidínica, denominada uracilo (U), que normalmente ocupa el lugar de la timina en el ARN y difiere de ésta en que carece de un grupo metilo en su anillo. El uracilo no se encuentra habitualmente en el ADN, sólo aparece raramente como un producto residual de la degradación de la citosina por procesos de desaminación oxidativa.

Timina: 2, 4-dioxo, 5-metilpirimidina.Timina:
En el código genético se representa con la letra T. Es un derivado pirimidínico con un grupo oxo en las posiciones 2 y 4, y un grupo metil en la posición 5. Forma el nucleósido timidina (siempre desoxitimidina ya que sólo aparece en el ADN) y el nucleótido timidilato o timidina monofosfato (dTMP). En el ADN, la timina siempre se empareja con la adenina de la cadena complementaria mediante 2 puentes de hidrógeno, T=A. Su fórmula química es C5H6N2O2 y su nomenclatura 2, 4-dioxo, 5-metilpirimidina.

Citosina: 2-oxo, 4-aminopirimidina.Citosina:
En el código genético se representa con la letra C. Es un derivado pirimidínico, con un grupo amino en posición 4 y un grupo oxo en posición 2. Forma el nucleósido citidina (desoxicitidina en el ADN) y el nucleótido citidilato o (desoxi)citidina monofosfato (dCMP en el ADN, CMP en el ARN). La citosina siempre se empareja en el ADN con la guanina de la cadena complementaria mediante un triple enlace, C≡G. Su fórmula química es C4H5N3O y su nomenclatura 2-oxo, 4 aminopirimidina. Su masa molecular es de 111,10 unidades de masa atómica. La citosina fue descubierta en 1894 cuando fue aislada en tejido del timo de carnero.

Adenina: 6-aminopurina.Adenina:
En el código genético se representa con la letra A. Es un derivado de la purina con un grupo amino en la posición 6. Forma el nucleósido adenosina (desoxiadenosina en el ADN) y el nucleótido adenilato o (desoxi)adenosina monofosfato (dAMP, AMP). En el ADN siempre se empareja con la timina de la cadena complementaria mediante 2 puentes de hidrógeno, A=T. Su fórmula química es C5H5N5 y su nomenclatura 6-aminopurina. La adenina, junto con la timina, fue descubierta en 1885 por el médico alemán Albrecht Kossel.

Guanina: 6-oxo, 2-aminopurina.Guanina:
En el código genético se representa con la letra G. Es un derivado púrico con un grupo oxo en la posición 6 y un grupo amino en la posición 2. Forma el nucleósido (desoxi)guanosina y el nucleótido guanilato o (desoxi)guanosina monofosfato (dGMP, GMP). La guanina siempre se empareja en el ADN con la citosina de la cadena complementaria mediante tres enlaces de hidrógeno, G≡C. Su fórmula química es C5H5N5O y su nomenclatura 6-oxo, 2-aminopurina.
También existen otras bases nitrogenadas (las llamadas bases nitrogenadas minoritarias), derivadas de forma natural o sintética de alguna otra base mayoritaria. Lo son por ejemplo la hipoxantina, relativamente abundante en el tRNA, o la cafeína, ambas derivadas de la adenina; otras, como el aciclovir, derivadas de la guanina, son análogos sintéticos usados en terapia antiviral; otras, como una de las derivadas del uracilo, son antitumorales.

Las bases nitrogenadas tienen una serie de características que les confieren unas propiedades determinadas. Una característica importante es su carácter aromático, consecuencia de la presencia en el anillo de dobles enlaces en posición conjugada. Ello les confiere la capacidad de absorber luz en la zona ultravioleta del espectro en torno a los 260 nm, lo cual puede ser aprovechado para determinar el coeficiente de extinción del ADN y hallar la concentración existente de los ácidos nucleicos. Otra de sus características es que presentan tautomería o isomería de grupos funcionales debido a que un átomo de hidrógeno unido a otro átomo puede migrar a una posición vecina; en las bases nitrogenadas se dan dos tipos de tautomerías: tautomería lactama-lactima, donde el hidrógeno migra del nitrógeno al oxígeno del grupo oxo (forma lactama) y viceversa (forma lactima), y tautomería imina-amina primaria, donde el hidrógeno puede estar formando el grupo amina (forma amina primaria) o migrar al nitrógeno adyacente (forma imina). La adenina sólo puede presentar tautomería amina imina, la timina y el uracilo muestran tautomería doble lactama-lactima, y la guanina y citosina pueden presentar ambas. Por otro lado, y aunque se trate de moléculas apolares, las bases nitrogenadas presentan suficiente carácter polar como para establecer puentes de hidrógeno, ya que tienen átomos muy electronegativos (nitrógeno y oxígeno) presentando carga parcial negativa, y átomos de hidrógeno con carga parcial positiva, de manera que se forman dipolos que permiten que se formen estos enlaces débiles.

Se estima que el genoma humano haploide tiene alrededor de 3.000 millones de pares de bases. Para indicar el tamaño de las moléculas de ADN se indica el número de pares de bases, y como derivados hay dos unidades de medida muy utilizadas, la kilobase (kb), que equivale a 1.000 pares de bases, y la megabase (Mb), que equivale a un millón de pares de bases.

Estructuras en doble hélice

De izquierda a derecha, las estructuras de ADN A, B y Z.El ADN existe en muchas conformaciones. Sin embargo, en organismos vivos sólo se han observado las conformaciones ADN-A, ADN-B y ADN-Z. La conformación que adopta el ADN depende de su secuencia, la cantidad y dirección de superenrollamiento que presenta, la presencia de modificaciones químicas en las bases y las condiciones de la solución, tales como la concentración de iones de metales y poliaminas. De las tres conformaciones, la forma "B" es la más común en las condiciones existentes en las células. Las dos dobles hélices alternativas del ADN difieren en su geometría y dimensiones.

La forma "A" es una espiral que gira hacia la derecha, más amplia que la "B", con una hendidura menor superficial y más amplia, y una hendidura mayor más estrecha y profunda. La forma "A" ocurre en condiciones no fisiológicas en formas deshidratadas de ADN, mientras que en la célula puede producirse en apareamientos híbridos de hebras ADN-ARN, además de en complejos enzima-ADN.

Los segmentos de ADN en los que las bases han sido modificadas por metilación pueden sufrir cambios conformacionales mayores y adoptar la forma "Z". En este caso, las hebras giran alrededor del eje de la hélice en una espiral que gira a mano izquierda, lo opuesto a la forma "B" más frecuente.Estas estructuras poco frecuentes pueden ser reconocidas por proteínas específicas que se unen a ADN-Z y posiblemente estén implicadas en la regulación de la transcripción.

DNA PROFILING:

DNA profiling (also called DNA testing, DNA typing, or genetic fingerprinting) is a technique employed by forensic scientists to assist in the identification of individuals on the basis of their respective DNA profiles. DNA profiles are encrypted sets of numbers that reflect a person's DNA makeup, which can also be used as the person's identifier. DNA profiling should not be confused with full genome sequencing. It is used in, for example, parental testing and rape investigation.
Although 99.9% of human DNA sequences are the same in every person, enough of the DNA is different to distinguish one individual from another. DNA profiling uses repetitive ("repeat") sequences that are highly variable, called variable number tandem repeats (VNTR). VNTRs loci are very similar between closely related humans, but so variable that unrelated individuals are extremely unlikely to have the same VNTRs.
RFLP analysis
Main article: Restriction fragment length polymorphism
The first methods for finding out genetics used for DNA profiling involved restriction enzyme digestion, followed by Southern blot analysis. Although polymorphisms can exist in the restriction enzyme cleavage sites, more commonly the enzymes and DNA probes were used to analyze VNTR loci. However, the Southern blot technique is laborious, and requires large amounts of undegraded sample DNA. Also, Karl Brown's original technique looked at many minisatellite loci at the same time, increasing the observed variability, but making it hard to discern individual alleles (and thereby precluding parental testing). These early techniques have been supplanted by [[polymerase chain reaction|PCR]dna]-based assays.
PCR analysis
Main article: polymerase chain reaction
With the invention of the polymerase chain reaction (PCR) technique, DNA profiling took huge strides forward in both discriminating power and the ability to recover information from very small (or degraded) starting samples. PCR greatly amplifies the amounts of a specific region of DNA, using oligonucleotide primers and a thermostable DNA polymerase. Early assays such as the HLA-DQ alpha reverse dot blot strips grew to be very popular due to their ease of use, and the speed with which a result could be obtained. However they were not as discriminating as RFLP. It was also difficult to determine a DNA profile for mixed samples, such as a vaginal swab from a sexual assault victim.

Fortunately, the PCR method is readily adaptable for analyzing VNTR loci. In the United States the FBI has standardized a set of 13 VNTR assays for DNA typing, and has organized the CODIS database for forensic identification in criminal cases. Similar assays and databases have been set up in other countries. Also, commercial kits are available that analyze single-nucleotide polymorphisms (SNPs). These kits use PCR to amplify specific regions with known variations and hybridize them to probes anchored on cards, which results in a colored spot corresponding to the particular sequence variation.

STR analysis
Main article: Short tandem repeats
The method of DNA profiling used today is based on PCR and uses short tandem repeats (STR). This method uses highly polymorphic regions that have short repeated sequences of DNA (the most common is 4 bases repeated, but there are other lengths in use, including 3 and 5 bases). Because unrelated people almost certainly have different numbers of repeat units, STRs can be used to discriminate between unrelated individuals. These STR loci (locations on a chromosome) are targeted with sequence-specific primers and amplified using PCR. The DNA fragments that result are then separated and detected using electrophoresis. There are two common methods of separation and detection, capillary electrophoresis (CE) and gel electrophoresis.
Each STR is polymorphic, however, the number of alleles is small. Typically each STR allele will be shared by around 5 - 20% of individuals. The power of STR analysis comes from looking at multiple STR loci simultaneously. The pattern of alleles can identify an individual quite accurately. Thus STR analysis provides an excellent identification tool. The more STR regions that are tested in an individual the more discriminating the test becomes.

From country to country, different STR-based DNA-profiling systems are in use. In North America, systems which amplify the CODIS 13 core loci are almost universal, while in the UK the SGM+ system (which is compatible with The National DNA Database), is in use. Whichever system is used, many of the STR regions used are the same. These DNA-profiling systems are based on multiplex reactions, whereby many STR regions will be tested at the same time.

The true power of STR analysis is in its statistical power of discrimination. Because the 13 loci that are currently used for discrimination in CODIS are independently assorted (having a certain number of repeats at one locus doesn't change the likelihood of having any number of repeats at any other locus), the product rule for probabilities can be applied. This means that if someone has the DNA type of ABC, where the three loci were independent, we can say that the probability of having that DNA type is the probability of having type A times the probability of having type B times the probability of having type C. This has resulted in the ability to generate match probabilities of 1 in a quintillion (1 with 18 zeros after it) or more.
However, DNA database searches showed much more frequent than expected false DNA matches including one perfect 13 locus match out of only 30,000 DNA samples in Maryland in January 2007.[6] Moreover, since there are about 12 million monozygotic twins on Earth, that theoretical probability is useless. For example, the actual probability that 2 random people have the same DNA depends on whether there were twins or triplets (etc.) in the family, and the number of loci used in the test. Where twins are common, the probability of matching the DNA is 22 in 1000, or about 2.2 in 100 will have matching DNA.

In practice, the risk of contaminated-matching is much greater than matching a distant relative, such as a sample being contaminated from nearby objects, or from left-over cells transferred from a prior test. Logically, the risk is greater for matching the most common person in the samples: everything collected from, or in contact with, a victim is a major source of contamination for any other samples brought into a lab. For that reason, multiple control-samples are typically tested, to ensure that they stayed clean, when prepared during the same period as the actual test samples. Unexpected matches (or variations) in several control-samples indicates a high probability of contamination for the actual test samples. In a relationship test, the full DNA profiles should differ (except for twins), to prove that a person wasn't actually matched as being related to their own DNA in another sample.
AmpFLP
Main article: Amplified fragment length polymorphism
Another technique, AmpFLP, or amplified fragment length polymorphism was also put into practice during the early 1990s. This technique was also faster than RFLP analysis and used PCR to amplify DNA samples. It relied on variable number tandem repeat (VNTR) polymorphisms to distinguish various alleles, which were separated on a polyacrylamide gel using an allelic ladder (as opposed to a molecular weight ladder). Bands could be visualized by silver staining the gel. One popular locus for fingerprinting was the D1S80 locus. As with all PCR based methods, highly degraded DNA or very small amounts of DNA may cause allelic dropout (causing a mistake in thinking a heterozygote is a homozygote) or other stochastic effects. In addition, because the analysis is done on a gel, very high number repeats may bunch together at the top of the gel, making it difficult to resolve. AmpFLP analysis can be highly automated, and allows for easy creation of phylogenetic trees based on comparing individual samples of DNA. Due to its relatively low cost and ease of set-up and operation, AmpFLP remains popular in lower income countries.
DNA family relationship analysis
Using PCR technology, DNA analysis is widely applied to determine genetic family relationships such as paternity, maternity, siblingship and other kinships.
During conception, the father’s sperm cell and the mother’s egg cell, each containing half the amount of DNA found in other body cells, meet and fuse to form a fertilized egg, called a zygote. The zygote contains a complete set ofDNA molecules, a unique combination of DNA from both parents. This zygote divides and multiplies into an embryo and later, a full human being.
DNA does not change once it is formed at conception. At each stage of development, all the cells forming the body contain the same DNA—half from the father and half from the mother. This fact allows the relationship testing to use all types of all samples including loose cells from the cheeks collected using buccal swabs, blood or other types of samples.
While a lot of DNA contains information for a certain function, there is some called junk DNA, which is currently used for human identification. At some special locations (called loci) in the junk DNA, predictable inheritance patterns were found to be useful in determining biological relationships. These locations contain specific DNA markers that DNA scientists use to identify individuals. In a routine DNA paternity test, the markers used are Short Tandem Repeats (STRs), short pieces of DNA that occur in highly differential repeat patterns among individuals.
Each person’s DNA contains two copies of these markers—one copy inherited from the father and one from the mother. Within a population, the markers at each person’s DNA location could differ in length and sometimes sequence, depending on the markers inherited from the parents.
The combination of marker sizes found in each person makes up his/her unique genetic profile. When determining the relationship between two individuals, their genetic profiles are compared to see if they share the same inheritance patterns at a statistically conclusive rate.

No hay comentarios:

Publicar un comentario